ISTANBUL TECHNICAL UNIVERSITY
FACULTY OF COMPUTER AND
INFORMATICS

SOLVING BUILDING PLACEMENT PROBLEM IN A REAL-TIME
STRATEGY VIDEO GAME

Graduation Project
Volkan llbeyli
040100118

Department : Computer Engineering
Division : Computer Engineering

Advisor : Asst. Prof. Dr. Sanem SARIEL

July 2014

ISTANBUL TECHNICAL UNIVERSITY
FACULTY OF COMPUTER AND
INFORMATICS

SOLVING BUILDING PLACEMENT PROBLEM IN A REAL-TIME
STRATEGY VIDEO GAME

Graduation Project
Volkan llbeyli
040100118

Department : Computer Engineering
Division : Computer Engineering

Advisor : Asst. Prof. Dr. Sanem SARIEL

July 2014

Declaration of Authenticity

I would personally like to acknowledge you that;
1. I have specified all the references of the quotations by other sources that are used in my

thesis, by stating the original sources,
2. Except of the quotations from other sources; all of the theoretic studies, software and
hardware that determines the main topic of the project and are used in the thesis are

done by me.
Istanbul, 2014

Volkan Ilbeyli

Acknowledgements

First and foremost, | would like to thank Asst. Prof. Dr. Sanem Sariel for accepting me and
helping me complete this project and to my dear family who always supported me helped
me become a successful individual.

I would like to thank Fevzi ‘Arcane’ Altuncu and Ali Sinanoglu for encouraging me to
continue and finish this project as StarCraft is the three of ours’ favorite game of all times.

Finally, special thanks to Gokhan Coban and Mert Salik for all the projects we have done
together, their criticisms and for all the ideas we shared together, as they have helped me
to become this person who is always aiming for the best and chasing his childhood dream
as of now.

SOLVING BUILDING PLACEMENT PROBLEM IN A REAL-TIME
STRATEGY GAME

(SUMMARY)

StarCraft [4] is a real-time strategy video game, created by Blizzard Entertainment in 1998
and is the recent platform for real-time artificial intelligence. With the development of
BWAPI, a hack tool used to access in game data, StarCraft player- Al researchers began to
research in the area, starting in 2009. Recent publications in the area such as A Survey of
Real-Time Strategy Game Al Research and Competition in StarCraft, Fast Heuristic
Search for RTS Game Combat Scenarios, and more, proved the tool to be quite useful.
Among the many other sub-problems, blocking the entrance of a base, namely walling in,
is another sub-problem that is covered in this study.

A simple game playing agent is implemented that simply follows a certain build order (the
order by which the agent produces units or structures) and executes the logic program that
is obtained and modified from Michal Certicky’s Implementing a Wall-In Building
Placement in StarCraft with Declarative Programming. The logic program takes the data
that is gathered by the game playing agent by the help of BWAPI’s [5] terrain analyzer tool
and solves the constraint satisfaction problem (CSP) using answer set programming (ASP)
paradigm.

The solution process involves two stages: acquiring the answer set and optimizing the
results. Two optimization methods are used and analyzed one of which minimizes the gap
values between the structures and the other minimizes the cost of the wall using buildings’
resource cost values. Each of the methods has its advantages and disadvantages as one
method might be preferred over the other method in certain situations with respect to the
choke point’s width.

GERGEK ZAMANLI STRATEJI OYUNUNUNDA BiNA YERLESTIRME
PROBLEMININ COZULMESI

(OZET)

StarCraft, Blizzard Entertainment tarafindan iiretilen ve 1998 yilinda piyasaya siiriilen
gercek zamanli bir strateji oyunudur ve giiniimiizde ger¢ek zamanl yapay zeka sistemleri
icin kullanilan platformdur. Oyun motorunun detaylarina takilmadan oyun i¢i veriye
erigsimi saglayan ve bir hack-tool olan BWAPI'nin 2009 yilinda gelistirilmesiyle gergek
zamanl yapay zeka sistemlerine dair aragtirmalar hiz kazandi. Son zamanlarda yayinlanan
A Survey of Real-Time Strategy Game Al Research and Competition in StarCraft, Fast
Heuristic Search for RTS Game Combat Scenarios, vb. makaleler BWAPI’nin ne kadar
kullanishi oldugunun kanitidir. Diger birgok problemin arasinda bulunan iis girisini
kapatma problemi, diger adiyla wall-in, bu ¢alismada ele alinmaktadir.

Proje kapsaminda oncelikle belli bir birim sirasini takip eden ve Michal Certicky'nin
Implementing a Wall-In Building Placement in StarCraft with Declarative Programming
makalesinden esinlenerek gerceklennen ve gelistirilen mantiksal programi calistiran
otonom bir yapay zeka sistemi gerceklenmistir. Mantiksal program, otonom yapay zeka
sistemi tarafindan BWAPI'nin yardimiyla elde edilen arazi bilgisi ile bir constraint
satisfaction problemi olarak modellenen is girisini kapama problemini answer set
programming (ASP) paradigmasini kullanarak ¢o6zmektedir.

Oyunda binalar yan yana yerlestirildiginde binalarin yerlesimine gore aralarinda bosluklar
kalmaktadir. Coziim yontemi bu bosluklar1 dikkate alarak bir ¢oziim tlretmektedir. Bir
diger dikkate alinan 6l¢iit ise binalar1 insa etmek i¢in gerekli olan kaynak miktaridir.

(Cozlim siireci cevap kiimesini elde etmek ve optimum ¢6ziimii bulmak olarak iki asamadan
olusur. Kullanilan ve analiz edlien optimizasyon metotlar1 binalar arasindaki boslugu ve
duvarin olusumunda kaynak harcamasini minimize eden iki metottan olusur. Her yontemin
kendine gore avantajlar1 ve dezavantajlari olmasina karsin bogum noktasinin genisligine
bagli olarak bazi durumlarda bir metodun digerine gore tercih edilebilir oldugu
gozlemlenmistir.

Bogum noktas1 uzunlugu, uygun olan yer karosu (tile) sayisi, bogum noktasinin bulundugu
bolgenin sekli, harita dekorlar1 (agaglar, goctikler, engeller, vb.) gibi degiskenlerin
bulunmasi nedeniyle tek basina programin ¢alisma siiresini tam olarak belirleyebilmek i¢in
yeterli bir parametre degildir. Buna ragmen bu parametrenin incelenmesi yeteri kadar ve
uygulanabilir sonuglar elde etmek icin yeterlidir.

Calisma sonunda elde edilen sonuglara gore mantiksal programa gercek senaryolara uygun
olan dort saniyelik bir kogma {ist sinir1 verildiginde her iki optimizasyon yontemi de 280
piksel genislik ve sonrasi i¢in dort saniyeden uzun siirede program sonlanmaktadir. Bu
sonuca gore duvar Oriilebilecek en genis bogum noktas1 280 piksel uzunlugu gegmemelidir.
135 piksel - 280 piksel araligindaki sonuglar incelendiginde bosluk optimizasyonu
yonteminin dort saniyeden uzun siirdiigii ancak kaynak optimizasyonunun ise diger
yonteme gore olduk¢a ¢abuk sonlandigi goriilmistiir. Bu nedenle 135 piksel - 280 piksel

uzunluk araligindaki bogum noktalar1 i¢in kaynak harcamasi optimizasyonu tercih
edilmelidir. Bundan daha dar dogum uzunluguna sahip bolgelerde ise bosluk
optimizasyonunu kullanan mantiksal program doért saniyenin altinda sonlandigi i¢in bosluk
optimizasyonu 135 piksel ve altindaki bogum noktasi genisligine sahip bdlgeler igin tercih
edilen yontem olmalidir.

Mantiksal programin iirettigi sonuglar oyun i¢inde gozlemlendigi zaman harita dekoru
bulundurmayan ve gorece olarak daha basit bir sekle sahip bogum noktalarinda Sekil 15 ve
Sekil 16'da goriildiigii gibi iki binanin yerlerinin degistigi; harita dekoru bulundugu zaman
bosluk optimizasyonu yapildiginda Sekil 17 ve Sekil 18'de goriildigii gibi bu dekorun
duvar orerken kullanildig1 gozlemlenmistir. Bunlardan farkli olarak ise bazi durumlarda,
mantiksal programda ortam modellenirken bazi basitlestirmelerin kullanilmasi nedeniyle
programin Sekil 19'da goriildiigli gibi optimal olmayan sonug iiretebildigi ya da ¢6ziim
oldugu halde programin ¢6ziime ulasamadigi gozlemlenmistir.

Basitlestirmelerden dogan sorunlar1 ortadan kaldirmak i¢in yiirlime karolarinin (walk tile)
birbirinden uzakligint kontrol eden ek bir kisitlama getirilebilir; yapay zeka sisteminin
profosyonel StarCraft oyuncularina daha yakin bir performans gdsterebilmesi i¢in bogum
noktalarindan avantaj elde edebilmek adina kismi duvar 6rme algoritmasi gelistirilebilir.

TABLE OF CONTENTS

I [N @ 1 U T3 I 1 SRR 1
1.1. Project SCOPE and PUIPOSE.couiiiiiieeieiie it eieeee et sieeste e ste e sraesne e 1
1.2, ArBA OT USAJE ...t 2
1.3. Resource, Time Management and EXPectations.............cccocvevviieiieene e seesie s 2
1.4. Risk Analysis and Gantt Chart ..o 3

2. THEORETIC RESEARCHcooiiiiiiiese et 5
2.1. Sub-Problems, Recent Challenges, TEChNIQUEScceoeriiiiniieiieiiee e 5
2.2. Bot Architecture & Some Algorithms Used In the Area..........ccccoevvevniveinennenn, 6

3. ANALYSIS AND MODELING......cccoiitititieiieieiesese e 9
3.1 Environment Variables ..o 9
B L L. THIES et 9
3.1.2. LC T 10 TSRS 10
3.2, ITUBOt and Terrain ANAIYSISccooiiiiiriiieiee e 10
3.3, Problem FOrmulation ..o 13

4. DESIGN AND IMPLEMENTATIONcoooiitiecieieie et 15
4.1. Encoding the Problem in Claspcccccevveiieieiieie e 15
4.2, BOUATCHITECIUIE......ieiiiie ettt eeenee e 18

5. TESTING & RESULTSoiiiiiiieeie et 21

T 610]\ 0 I U] [] 27

7. REFERENCES ... s 28

1.INTRODUCTION

1.1. Project Scope and Purpose

The algorithms used in strategy games such as Go and Chess has come a long way since
the beginning of the Al researches and managed to beat the top human players in late 90s
and early 2000s. However, things are way more complicated in real-time environments
such as Real-Time Strategy (RTS) games. StarCraft is an RTS video game created in 1998
by Blizzard Entertainment and is the game the Al algorithms are tested on in this project.
In environments such as RTS games the space and states are much larger than the ones in
regular strategy games while the constraints are way stricter, thus making RTS Al way
more complicated than the regular Al. To give an idea about the vastness of state space in
RTS games, below is the quote of Churchill from his paper [1]:

“From a theoretical point of view, the state space of a StarCraft game for a given map is
enormous. For example, consider a 128 128 map. At any given moment there might be
between 50 to 400 units in the map, each of which might have a complex internal state
(remaining energy and hitpoints, action being executed, etc.). This quickly leads to an
immense number of possible states (way beyond the size of smaller games, such as Chess
or Go). For example, just considering the location of each unit (with 128 128 possible
positions per unit), and 400 units, gives us an initial number of 16384*%° ==~ 108, If we
add the other factors playing a role in the game, we obtain even larger numbers.”|

StarCraft is a popular RTS game where players compete with each other by collecting
resources, making armies, applying various tactics in combat and try to destroy the
opponent player [2]. A sample screenshot from the game is given in Figure 1.

Figure 1: A Protoss (a race in game) army destroying its opponent.

RTS games have been an interesting area of research domain for Artificial Intelligence due
to the representation of well-defined complex adversarial systems and their divisibility into
numerous interesting sub-problems [1]. One of the sub-problems is “The Walling-in
Problem”, as called by the StarCraft community, Liquipedia, which is defined as “Walling
is the act of intentionally narrowing the passageway between strategical points by placing
buildings in a certain setup.” [3].

Walling-in is an important feature of a professional player which has a crucial outcome: In
the early game, professional players place their buildings around the choke-points (narrow
passages) so that an early aggression could be suppressed. If players do not conduct this
strategy, the attacking units of the opposing player might get inside the base, kill the
worker units and damage the economy severely, if not destroy all of the units and win the
game. A serious damage to economy most probably leads to a defeat. Therefore walling-in
is considered very important.

Current StarCraft game playing agents focused on other primary sub-problems such as
build-order planning, micro-management, combat tactics, etc. and did not pay much
attention to this problem. This project will deal with this problem by formulating the
walling-in as a CSP problem, implementing algorithms to solve the problem in declarative
programming (ASP, clasp) paradigm. The project is aiming to analyze the current solution
and improve it by modifying it.

1.2. Area of Usage

The project is directly related to the ever growing industry of video game entertainment
and the research area of real-time artificial intelligence. Improving the gameplay of Al
agents, getting them to a higher level near their human rivals will make the gameplay more
enjoyable, more realistic and more challenging. The future of RTS Al offers more
platforms for human-computer interaction and what the industry needs: more challenge,
more fun, more entertainment. In addition, StarCraft leads the real-time Al research area
thanks to the BWAPI and fairly complicated game play. Most important papers are
published in 2012/2013 and the ever growing research continues while more and more
researchers are interested in the area.

1.3. Resource, Time Management and Expectations

There is an API called BWAPI which lets the users communicate with the game engine
directly, thus helping the programmer focus on the Al aspects rather than dealing with the
irrelevant components of the game engine. A documentation of BWAPI can be obtained
from its website which is provided in the references section. Other resources are the game
itself: StarCraft: Brood War and the game playing agent: UAlbertaBot and the example
BWAPI Al module.
As for the time management, the project can be divided into subsections:
e Survey of Al techniques used in RTS games (1 — 1.5 months)
e Analysis of UAIbertaBot & Example Al Module (1 month)
e Formulation of the problem (2.5 months)
o Sensory input
o Available actions
e Implementation of algorithms (4 months)

e Analysis of the implemented search methods (1 month)

e Test & Iterations (1.5 month)

e Report & Presentation (1.5 month)
At the end of the project, among a successful implementation of the walling-in algorithm,
the gameplay of an agent is improved by the implemented algorithm helping them survive
early aggressions. This is one of the sub-problems in the RTS game Al that will be
attempted to be solved.

1.4. Risk Analysis and Gantt Chart

There are some foreseen risks in the project:
e |naccurate time estimation

Time estimation made in the beginning of the project might be inaccurate and may
result in late submission, less number of implemented algorithms, poor analysis and
comparison report. The mitigation of this risk is to monitor the project every week
and track the progress carefully.

e The lectures attended during the terms might be overwhelming

Density of the lectures might interfere with the project and decrease the progress
velocity, resulting in delays and same negative outcomes described in previous risk.

e Lack of Al Knowledge

Prior to the project, there will be a lack of Al knowledge since no Al courses have
been taken thus far. Learning problem formulations, algorithms used for different
problems might take some time, which, again, will result in delays and negative
outcomes as described above.

e Poor algorithm performance

The implemented algorithms might perform poorly when applied in the real-time
environment of the video game. The mitigation of this risk is to do as many tests as
possible to measure the performance of the agent and apply necessary
improvements.

The time management of the project is explained above and the Gantt Chart of the project
workflow is given in Table 1.

Table 1 - Gannt chart of the project

FALL TERM

SEMESTER

SPRING TERM

Learning how to use
Clasp, Implementation of

Algorithms

2. THEORETIC RESEARCH

2.1. Sub-Problems, Recent Challenges, Techniques

There are lots of sub-problems in which Al techniques are used in StarCraft. The following
are the recent challenges in the field [6]:

Planning

Since the state space is vast, game-tree search is not applicable, and therefore multiple
level of abstraction is needed: long-term planning for a balance in good economy —
large army, short-term planning for combat decisions.

Learning

Three types of learning: prior learning, in-game learning, inter-game learning. Prior
learning includes extracting information from replays, or map terrain to gain advantage
before the game. In-game learning includes opponent modeling. Inter-game learning
concerns about improving the agent from game to game.

Uncertainty

Map is partially observable, therefore scouting is needed for gathering information
about the opponent. Games are adversarial, impossible to predict what opponent will
do. Human players consider actions that opponents are likely-to-do.

Spatial and temporal reasoning

Spatial reasoning: Terrain exploitation: higher ground has advantage over lower ground
since units on lower ground has no sight of the higher ground. Deciding where to
engage combat to use bottlenecks for advantage. Base expansion, finding and deciding
best location according to opponent base’s location.

Temporal reasoning: timing attacks, retreats. Long-term planning of actions that has a
higher impact on economy such as upgrades, strategy switching etc. A diagram
illustrating spatial and temporal reasoning used in StarCraft is shown in Figure 2.

. . mean
player's intentions plan tarm
2 Strategy ~3 min
=
7
- g |
® 5 \V4
5 g
o R = Tactics ~30 sec
S 5
(141
= =
2
o Reactive control ~1sec

direct knowledge

Figure 2 - Spatial and temporal reasoning [6]

Domain knowledge exploitation

Traditional strategy games (chess, go) exploited large amounts of the domain
knowledge and developed good evaluation functions. On the other hand StarCraft has a
much larger domain and approaches are in two ways: Hard-coding the strategies into
agents and running an algorithm to decide instead of an adaptive approach; large set of
replays are created and agents try to learn from replays. Both are still open problems.

Task decomposition

Strategy: high level decision making: finding an efficient or counter strategy.
Tactics: Implementation of the current strategy: army composition, building
positioning, army movements, timing etc. Tactics concern a group of units.

Reactive Control: Micro-management: Firing, retreating, kiting (hit-and-run).

Terrain Analysis: Choke-points, mineral and gas (resource) locations, high grounds.
Intelligence Gathering: Scouting the opponent.

For the human side of decision making, the StarCraft community mentions two tasks [7]:

Micro management: micro-management roughly corresponds to the reactive control
which involves the individual or a small group of unit control and positioning and etc.
Macro management: macro covers all of the above except reactive control. Unit
producing, expanding the base for extra resource income at the right time, choosing the
appropriate unit combination to counter the opponent etc.

Current studies in RTS game Al divided these tasks into three parts as shown in figure 2:
strategy, tactics and reactive control.

2.2. Bot Architecture & Some Algorithms Used In the Area

UAlbertaBot [8] is a StarCraft playing agent developed by David Churchill and his team.
The bot has a modular and hierarchical structure as illustrated in Figure 3:

UAlbertaBot Architecture
Information Game] Strategy
Manager Commander Manager
[\
Tools Macro Combat
Map Info Production Squad
¥ ¥
Pathfinder Planner AI Micro
)
Building Search AI
Workers Scouting

Figure 3: UAlbertaBot architecture [9]

Tasks are partitioned among modules according to their strategic meaning, as an
inspiration from the military. High level strategic decisions are made by the game
commander by gathering all the information about the current game state. From there,
commands are given to sub-commanders and so on which are directly in charge of
completing the low level tasks [9].

To solve the problems addressed in the previous section, some algorithms are
implemented, given the specifications of the StarCraft task environment as shown in table
2:

Table 2 - StarCraft world model

Task Observable | Agents Deterministic | Episodic Static Discrete
Environment
StarCraft Partially Multiple Stochastic Sequential Dynamic | Discrete

Below are some of them used on the UAlbertaBot:

e ABCD (Alpha-Beta search Considering Duration) algorithm is used for micro-
management (deciding what each unit will perform in a combat situation) which
can be classified as a zero-sum situation [9] as shown in Figure 4. This property
together with the fully observable state variables and simultaneous moves places
combat games in the class of “stacked matrix games” [1]. Those games can be
solved by backward induction starting with terminal states via Nash equilibrium
computations.

=
20

:o-(-__
-(——=Od-'"
I_—__,O::_‘-

= |

-
e

©
T

|
N
[
H
Yoy
Best Response
B Max node {_} Script node
() Min node <> Nash node

Figure 4: Search algorithms used in UAlbertaBot [1]

An any-time depth first branch and bounding algorithm is used for build order
planning. An ordered sequence of actions which produces a given set of goal units
is called a build order [1].

There are a few approaches addressing strategic decision making: hard-coded,

planning based and machine learning based approaches. Therefore, various
machine learning algorithms are used as well [1].

3. ANALYSIS AND MODELING

3.1. Environment Variables

Liquipedia, the Wikipedia of the StarCraft universe, defines the term “walling” or
“walling-in” as follows: “Walling is the act of intentionally narrowing the passageway
between strategical points by placing buildings in a certain setup.” [3].

Walling in most commonly includes, but is not limited to, closing the entrance of the
player’s base, aiming to block the enemy units that are trying to get through as shown in
Figure 5.

Figure 5 - A Terran player walling in [11]

The idea behind the walling is shrinking the free space when a combat scenario occurs,
therefore providing advantage to the defending player’s units by reducing the surface area
of the units when a composition of melee attackers strike.

3.1.1.Tiles

In StarCraft Broodwar, the unit length is measured by pixels. A single square area that is
visible to a player when she is building structures is a 32x32 pixel square, named a build
tile.

10

Figure 6 - A Terran player building a Barracks (3x4)

Figure 6 is a screenshot from the game in which a Terran player is going to build a
structure named Barracks, which occupies 3x4 build tiles, thus having a width of 128
pixels and a height of 96 pixels. It can be seen from the figure that the lower left corner of
the building collides with another building in construction.

The second type of tiles is the walk tile, which has a dimension of 8x8 pixels on which
units are able to walk.

3.1.2.Gaps

When two buildings are placed next to each other as to occupy adjacent build tiles, the tiles
are not fully occupied due to the fact that the buildings have gaps associated with their
sides. Therefore, two neighbor tiles have a gap as much as the summation of each of the
structure’s associated side. The values of gaps for each building can be found in
Liquipedia. The Terran buildings’ gap list is shown in Figure 7.

Following this, when a Supply Depot (in the 1% row and the 3" building in Figure 7) is
placed above a Barracks (the 1% row and 2" building) the gap value will be 13, which is
the lowest combination of a gap value when these two buildings are built next to each
other. Thus, Supply-Depot-above-Barracks is usually a preferred building placement
strategy. When the gaps are wide enough for smaller units, even though all build tiles are
occupied by the buildings, these units can get through. The main idea is not blocking the
way only by buildings, but it is to narrow the passage so that the opponent’s melee units
will have a smaller surface area of their targets and thus provide advantage over the
combat to the defending player.

3.2. ITUBot and Terrain Analysis

BWAPI provides a built in terrain analysis tool called BWTA (BroodWar Terrain
Analysis) which reads and analyzes the map data in a different parallel-to-game thread. At
the end of the analysis, all the tile information is able to be obtained by the BWAPI

11

interface and can be drawn in game area as shown in Figure 8. The map is divided into

regions by the choke points, which are defined in Liquipedia [3] as:
“A choke is a narrow pathway or area that creates a funneling effect when moving through
it. Similar to high ground, a choke massively favors the defender over the attacker.

Examples of a choke include ramps and narrow passageways.”

Figure 7 — Enumeration of Terran buildings' gap sizes [10]

12

Figure 8 - After the terrain analysis, the borders of the base are drawn green and the choke point is
drawn red. Orange squares are the building placements as the result of the solver, which is not a part
of the terrain analysis and will be explained in the following section.

ITUBot has its build order planned beforehand, meaning that the units and structures the
bot is going to make is defined at the initialization stage, i.e., hardcoded into the bot. Since
build order planning is another area of the RTS Al, it is currently left for further study (see
[12]). The structures are built after the map analysis is finished.

Upon the completion of map analysis, the build and walk tile data are made ready by the
tile analysis made by the bot. BWAPI provides the properties of the tiles such as a tile is
buildable and walkable or there exists a path between given two tiles or positions (pixels).
In order to simplify the logic program, walk tiles (8x8) are extrapolated to build tiles
(32x32) by checking the four center walk tiles in a build tile, and then passed to the logic
program as walkable tiles.

In the build tile given in Figure 9 there exists 16 walk tiles. The green tiles are walkable
while the red tiles are not walkable tiles. The program checks the 4 center walk tiles and
according to the number of walkable tiles, this tile is passed as a walkable tile or ignored.
Due to this simplification, some complications are foreseen to occur.

Figure 9 — The abstraction representation (8x8) of a walk tile (32x32) for the logic program. This tile
would be considered as a walk tile and appear as a purple tile in the representation.

13

The tile analysis after the map analysis completes is shown in Figure 10. The purple tiles
are the walk tiles represented in the logic program. The logic program produces a result by
checking a path availability from a base point to an outside-base point by checking whether
adjacent tiles are blocked or not, which will be explained later. The green tiles are inside-
base buildable tiles. The presence of red squares in green circles represents that this is a
suitable tile to build a supply depot (a structure is placed according to top left tile of the
building layout meaning that a 2x3 building built on 44, 70 will occupy the following tiles:
44,70, 45,70, 46,70 , 44,71 , 45,71 , 46,71). Likewise, blue squares represent tiles that are
suitable for a barracks construction. Finally, the cyan tiles represent the outside base tiles.
The chokepoint is in between the area where green and cyan tiles are adjacent to each
other. Note that since in BWAPI, the coordinates (0, 0) refer to the upper left corner of the
map, increasing X means going right and increasing Y means going down. This means that
when buildings are placed on a coordinate (X, Y), the upper left tile of the building is
placed on this coordinate.

3.3. Problem Formulation

Given the entities described above (tiles, gaps, structures), it is possible to formulate the
problem as a CSP (Constraint Satisfaction Problem). [13] A CSP problem typically has the
form of a triple < X, D, C == where X is the variable (in our case, buildings), D is the value
(the tile position on which the buildings can be built) assigned to that variable and C are
the constraints [13]. Certicky defines three constraints excluding the Protoss’ racial
building placement constraint [2]:
1. All the buildings should be able to be built on their designated locations depending
on the terrain properties (green squares after the analysis, figure 10).
2. Buildings cannot overlap (red square in figure 6).
3. There should not be a path available from inside the base to outside after the
buildings are constructed.

A CSP defined in this way often has multiple solutions some of which are more desirable
than others. To build a tight wall which prevents smaller units from passing through, a
player has to take into consideration the gap values of the buildings. This situation leads to
an optimization problem where the minimum gap value is desired in an answer set
programming framework.

Certicky solves both the constraint and the minimization problem using Answer Set
Programming (ASP) paradigm of logic programming by a tool named clingo. Clingo is the
combination of the grounder gringo and the solver clasp, written in C++ and developed at
the University of Potsdam. Clingo provides its users the basic ASP constructs such as
rules, constraints and facts, as well as a support for generator rules, optimization statements
and built-in arithmetic functions and aggregates. For more information, please refer to
Certicky’s Wall-in Building Placement (2013) [2] and the guide provided with the solver
bundle by University of Potsdam [14].

14

Figure 10 - Tile representation of a game environment. The purple tiles are walk tiles, the cyan tiles are
the tiles that are outside the base region and the green tiles are buildable inside-base tiles. Red and
blue tiles represent the available location for certain buildings, such as Supply Depot or Barracks.

15

4. DESIGN AND IMPLEMENTATION

4.1. Encoding the Problem in Clasp

An existing logic program originally designed by Michal Certicky solves the walling
problem by using ASP [2]. After implementing this solver, it has been observed that it
needs modifications for better results. In this project, this solution is extended to improve
its efficiency.

The ASP formulation of the problem includes the building variables such as resource cost,
width, height and gap which are hardcoded into the logic program as facts. Then, the
buildings to be used at the wall construction are specified.

% Building / Unit types
buildingType (marineType) .
buildingType (barracksType) .
buildingType (supplyDepotType) .

% Size specifications

width (marineType,1). height (marineType,1).
width (barracksType, 4) . height (barracksType, 3) .
width (supplyDepotType, 3) . height {supplyDepotType,2) .

% Cost specifications
costs (supplyDepotIype, 100) .
costs (barracksType, 150).

% Gaps

leftGap (barracksType, 16) . rightGap (barracksType, 7). topGap (barracksType, 8) . bottomGap (barracksType, 15) .
leftGap (supplyDepotIype, 10) . rightGap (supplyDepotType, 9) . topGap (supplyDepotIype, 10) . bottomGap (supplyDepotIype, 5) .
% Facts

building (barracksl). type (barracksl, barracksType).

building (barracks2). type (barracks2, barracksType).

building (supplyDepotl) . type (supplyDepotl, supplyDepotType).
building (supplyDepot2) . type (supplyDepot2, supplyDepotType).
building (supplyDepot4) . type (supplyDepotd4, supplyDepotType).
building (supplyDepot3) . type (supplyDepot3, supplyDepotType).

After presenting the building facts, constraints are specified. The first constraint states that
two different buildings cannot occupy the same tile position (cannot overlap) which
corresponds to the second constraint specified when formulating the problem. In other
words, a tile position (X, Y) occupied by Buildingl and Building2 and ‘Buildingl is not
the same as Building2’ cannot all hold true at the same time.

% Constraint: two units/buildings cannot occupy the same tile
:— occupiedBy (B1l, X, Y), occupiedBy (B2, X, Y), B1 '= B2.

Next rule states that the occupied tiles by the buildings must be defined. Using the
previously defined entities of the buildings, the rule can be specified as follows:

‘If a building is placed on position (X1, Y1) that has a type of BuildingType and that
BuildingType has a width of Z and a height of Q, and X2 is in the range of X1 inclusive
and X1+Z exclusive, likewise Y2 is in the range of Y1 inclusive and Y1+Q exclusive and
the tile (X2, Y2) is walkable; then the position (X2, Y2) is occupied by the building B".

16

% Tiles occupied by buildings

occupiedBy (B, X2,Y¥Y2) :- place(B, X1, Y1),
type (B, BT), width (BT,Z), height (BT, Q).
X2 »>= X1, X2 « X1+Z, Y2 >= Y1, Y2 < Y1+,
walkakleTile (X2, Y2).

The following set of rules simply calculates the vertical and horizontal gaps of the
buildings if they have adjacent tiles in a similar fashion to the previous rule. These
calculated gap values will later be used in the optimization phase.

% Gaps between two adjacent tiles, occupied by buildings.
verticalGap (X1,Y1,X2, Y2, 5) :-

occupiedBy (B1,X1,¥1l), occupiedBy(B2,X2,Y2),

Bl !'= B2, X1=¥2, Y1=Y2-1, G=31+32,

type (B1,T1), tyvpe(B2,T2), bottomEap(Tl,51), topGap(T2,52).

verticalGap (X1,Y¥1,X2,Y2,G) -
occupliedBy (B1,X1,¥1), occupiedBy(B2,X2,¥Y2),
Bl '= B2, H1=¥2, Y1=¥Y2+1, G=51+52,
type (B1,T1), type(B2,T2), bottomGap(TZ2,52), topGap(Tli,51).

horizontalGap (X1,Y1,X2,Y2,G) :-
occupiedBy (B1,X1,¥1l), occupiedBy(B2,X2,Y2),
Bl !'= B2, X1=¥2-1, Yi=Y2, G=31+32,
type (B1,T1), type(B2,T2), rightGap(T1l,51), leftGap(T2,52).

horizontalGap(X1,Y1l,X2,¥Y2,G) -
occupliedBy (B1,X1,¥1), occupiedBy(B2,X2,¥Y2),
Bl '= B2, H1=¥2+1, ¥Y1=¥Z, G=51+52,
type (B1,T1), type(B2,T2), rightGap(T2,52), leftGap(T1l,51).

The following rule is specified to be used as an alternative optimization criterion, which
simply calculates the mineral cost of each building that are used in wall construction.

cost (B, C) :- place(B, X, YY), type(B, BT), costs(BT, COST), C=COST.

Now that the rules and constraints regarding the building placement are specified, the tile
information is required. BWAPI’s BWTA module thankfully does the analysis to the point
where the tiles contain data such as buildable and walkable. The tile information
surrounding a choke point is passed to the solver by the bot. A certain range of tiles are
passed to the solver in order to reduce the computation time. These facts — buildable tiles
in particular — directly satisfy the 1 constraint specified in the problem formulation, i.e.,
‘All the buildings should be able to be built on their designated locations depending on the
terrain properties’.

% Tile information

walkableTile (8, 45).

buildable (barracksIype, 32, ©0).

buildable (supplyDepotIype, 20, 61).

walkakbleTile (8, 46&).

walkableTile (8, 47).

In compliance with the 3" constraint, to check whether there is a path exists from inside
the base to outside the base, we must specify the inside and outside base coordinates, as
well as the rules for path existence. insideBase position is chosen as the closest tile to the

17

Command Center among the tiles passed to the solver while outsideBase position is chosen
as the farthest tile to the Command Center which has a path between them. The path
existence must be checked, otherwise, if the farthest chosen tile has no connections with
the rest of the near-base tiles, any solution will be accepted by the solver even though they
do not block the base entrance.

in=zideBa=se (36, 57). outsideBase (12, 49).

% Constraint: Inside of the base must not be reachable.
:— insideBase (X2,Y2), outsideBase (¥1,Y1), canBReach (¥XZ,Y2).

Next, the reachability rules among tiles must be defined. The first rule states that if a
walkable tile is occupied by a building, then that tile is blocked. The second rule simply
states that the outside base is reachable by definition, meaning that the solver will start to
check the path existence from the outside base. Finally, the set of reachability rules simply
states that if any of the adjacent (all 8 directions) walkable tiles are not blocked, that tile is
reachable. This is the exact reason that the actual smaller walk tiles are extrapolated to the
size of build tiles for simplification purposes. These set of rules take care of the path
finding problem associated with the 3" constraint.

% EReachability between tiles.
blocked (X,Y) :- occupiedBy(B,X,Y), building(B), walkableTile (X,Y).

canBeach (X,Y) :- outsideBase(X,Y).

canReach (X2,Y) :-
canBeach (X1,Y), X1=X2+l1l, walkableTile(X1l,Y), walkableTile (X2,Y),
not blocked(X1,Y), not blocked(X2,Y).
canReach (X2,Y) :-
canReach (¥1,Y), X1=X2-1, walkableTile(X1,Y), walkableTile (X2,Y),
not blocked(X1,Y), not blocked(X2,Y).
canBeach (X,Y2) :-
canReach (X,¥1), ¥Y1=Y2+1, walkableTile(X,¥1l), walkableTile (X,¥Y2),
not blocked(¥,¥1l), not blocked(X,¥Y2).
canBeach (X, Y2) :-
canReach (¥,¥1), ¥Y1=Y2-1, walkableTile(X,¥1l), walkableTile (X,¥Y2),
not blocked(¥X,¥1), not blocked(X,¥2).
canBeach (X2,Y2) :-
canReach (X1,Y1), X1=X2+1, Y1=Y¥2+1, walkableTile (X1,¥Y1l), walkakleTile (¥2,Y2),
not blocked(¥1,¥1), not blocked (¥2,72).
canReach(X2,¥2) -
canReach (X1,Y1), X1=X2-1, Y1=Y¥2+1, walkableTile (X1,¥Y1), walkakleTile (¥2,Y2),
not blocked(¥X1,¥1), not blocked (¥2,Y2).
canBReach (X2,Y¥2) :-
canReach (X1,Y1), X1=X2+1, ¥Y1=Y¥2-1, walkableTile (¥1,¥Y1l), walkakleTile (¥2,Y2),
not blocked(X1,Y1l), mnot blocked (X2,Y2).
canBReach (X2,Y¥2) :-
canReach (X1,¥1), X1=X2-1, ¥Y1=¥2-1, walkableTile (¥1,¥1l), walkableTile (X2,¥2),
not blocked(X1,Y1l), mnot blocked (X2,Y2).

Finally, all possible building placements are generated and then tested if they are in the set
of solutions to our CSP. It is desired to check solutions with exactly one
place(barracksl,X,Y) and place(supplyDepotl,X,Y) while the other building placements
can be omitted when minimizing the solution. The last line specifies what to minimize,
which is the cumulative cost value in this case.

18

% Generate all the potential placements.
l[place(barracksl,X,¥) : buildable(barracksType,X,¥Y)]1.
O[place (barracks2,X,Y) : buildable(barracksType,X,Y)]1.
l1[place (supplyDepotl,X,Y) : buildable {(supplvDepotType,X,¥)11.
O[place (supplyDepot2,X,¥Y) : buildable (supplyDepotIype,X,¥)]11.
O[place (supplyDepot3,X,Y) : buildable (supplyDepotIype,X,Y)]1.
O[place (supplyDepot4,X,Y) : buildable {(supplvDepotType,X,¥)11.

% Optimization criterion

fminimize [costc(B, C) = C].

In the case of gap minimization, prioritization among minimization literals are used. The
highest priority belongs to the vertical and horizontal gap together (notice the @1). In case
of no prioritization, which is the case in Certicky’s solution, first the horizontal gap would
be minimized and then the vertical gap would be minimized. In our case, the total gap
value is minimized rather than individual gap types. Since the solver is run once rather than
adding buildings iteratively in Certicky’s solution, we have to specify the minimization
criterion of the building placements. Otherwise, all the buildings will be used in the wall
configuration even though the path might be blocked with fever buildings. That is why the
minimization for buildings must be specified and must be assigned to the 2" priority.

% OCptimization criterion

fminimize [horizontalGap (¥1,Y1,X2,Y2,G) = G @1 .
fminimize [verticalGap(X1,¥1l,¥XZ2,¥2,G) = G B1].
fminimize [place (supplyDepot?,X,¥Y) #2].

fminimize [place (supplyDepot3,X,¥) #2].

#fminimize [place (supplyDepotd,X,¥) #2].

fminimize [place(barracks2, X,¥) @2].

As for the comparison of this study’s solution and Certicky’s solution, this study ignores
the enemy units’ dimensions when checking reachability since narrowing down the
available path to a single unit’s size grants enough tactical advantage at this level of
gameplay.

4.2. Bot Architecture

ITUBOot is built on the example Al module bundled with the BWAPI installer. It inherits all
the event functions (onFrame(), onSendText(), etc.) from the example Al module, as well
as the terrain analysis functions, draw functions and data functions as shown in Figure 11.
StarCraft Al bots have a similar architecture to that of game engines. onstart() function is
used for data initializations, onFrame() function is called every frame and the primary
function for Al calculations. The rest of the module functions are simply event handlers
that go through certain procedures after some designated events occur such as a completion
of a unit or a discovery of a unit.

Draw functions are used to draw analysis data on the game area after the map analysis is
finished. Data functions are used to display information in the game area if certain flags are
set. Build order functions return the build order, initialize the build order and execute the
build order respectively. Build order execution is a loop that is called at each frame that
checks if the conditions are satisfied to build a structure or a unit (population constraint,
resource cost, etc.) and then sends the next item in the build order with the construction
command to a designated worker.

19

Wall functions return the vector of pairs of buildings and their tile positions; initialize the
logic program’s source code and executes the logic program, respectively. Logic

program’s initialization and execution is done after the map analysis is complete.

ITUBot

_buildOrder : queue<UnitType>
_wall : vector< pair<UnitType, TilePosition> >

// BWAPI AI Module functions

void onStart();

void onEnd(bool isWinner);

void onFrame();

void onSendText(std::string text);

void onReceiveText(BWAPI::Player* player, string text);
void onPlayerLeft(BWAPI::Player* player);
void onNukeDetect(BWAPI::Position target);
void onUnitDiscover(BWAPI::Unit* unit);
void onUnitEvade(BWAPI: :Unit* unit);

void onUnitShow(BWAPI::Unit* unit);

void onUnitHide(BWAPI::Unit* unit);

void onUnitCreate(BWAPI: :Unit* unit);

void onUnitDestroy(BWAPI: :Unit* unit);
void onUnitMorph(BWAPI: :Unit* unit);

void onUnitRenegade(BWAPI: :Unit* unit);
void onSaveGame(string gameName);

void onUnitComplete(BWAPI::Unit *unit);

// draw functions

Void drawStats();

void drawBullets();

void drawVisibilityData();
void drawTerrainData();
void drawChokeData();

// data functions

void showPlayers();

void showForces();

bool show_bullets;

bool show_visibility data;

// build order functions

queue<BWAPI: :UnitType>& buildOrder();

void populateBuildOrder();

void executeBuildOrder(BWAPI: :Unit* unit);

// wall functions

vector<std: :pair<BWAPI: :UnitType, BWAPI::TilePosition> >& wall();
static void initClingoProgramSource();

static void runASPSolver();

Figure 11 - ITUBot UML diagram

20

Figure 12 illustrates the overview of the execution of Al code by displaying the inner
workings of onstart () function and onFrame() function.

Print map & enemy info
Start map analysis
Send workers to mineral field
Populate build order

Executed Each Frame

Map
analysis Draw map analysis data
completed?

Make workers

If not enough supply, Ll Execute build order

. completed?
build supply depot P

Figure 12 - Flow chart of ITUBot

21

5. TESTING & RESULTS

Experiments are done for testing the performance of the ASP solver on different settings.
The machine (ASUS N550JV) specifications used for testing the solver are as follows:

e CPU: Intel Core i7-4700HQ @ 2.40 GHz

e RAM: 12GB

e HDD: 1TB HGST HTS541010A9E680

e OS: Windows 8.1 Pro

There are 8 different maps used when calculating the solver’s running time. The results are
presented in table 3. Gap minimization data is given in bold and the time results are in
seconds.

Table 3 - Map specific solver results with different optimization criteria

Optimization Start Building Time Time
Map Criteria Location Width Count Time Logl0 Log2
(4)Boxed In Gap top right 283,75 3 116,25 2,07 6,86
Cost 3 5,88 0,77 2,55
Gap bot right 186,76 3 3,64 0,56 1,86
Cost 3 0,81 -0,09 -0,30
(2)Astral Balance Gap top 131,06 3 2,30 0,36 1,20
Cost 3 0,77 -0,12 -0,38
Gap bot 135,20 4 16,61 1,22 4,05
Cost 4 1,09 0,04 0,13
(4)Lost Temple Gap top 62,23 3 10,031 1,00 3,33
Cost 3 1,219 0,09 0,29
Gap right 58,14 3 79,625 1,90 6,32
Cost 3 2,984 0,47 1,58
Gap left 59,82 2 3,109 0,49 1,64
Cost 2 1,000 0,00 0,00
Gap bot 62,23 3 4,109 0,61 2,04
Cost 3 1,203 0,08 0,27
(2)Binary Burghs Gap top 354,18 5 453,109 2,66 8,82
Cost 5 16,375 1,21 4,03
Gap bot 273,64 3 16,844 1,23 4,07
Cost 3 1,781 0,25 0,83
(3)Ice Mountain Gap bot left 72,47 2 0,375 -0,43 -1,42
Cost 0,156 -0,81 -2,68
Gap top right 73,54 2 1,91 0,28 0,93

Cost 0,359 -0,44 -1,48

(4)Nightmare

Station

(2)Challenger

(2)Space Madness

The number in parentheses in the beginning of the map name denotes the

Gap
Cost
Gap
Cost
Gap
Cost
Gap
Cost

Gap
Cost
Gap
Cost

Gap
Cost
Gap
Cost

top left

top right

bot left

bot right

top

bot

top

bot

193,49

197,59

187,45

190,16

283,52

207,69

92,19

96,166

N N NN NN NN

N N W N

N N W W

1,3
0,391
6,578
0,797

8,01
0,859
6,89
0,859

7,875
1,062
17,625
0,922

1,047
0,359
0,442
0,266

22

0,11 0,38
041 -1,35
0,82 2,72
0,10 -0,33
0,90 3,00
0,07 -0,22
0,84 2,78
0,07 -0,22
0,90 2,98
0,03 0,09
1,25 4,14
0,04 0,12
0,02 0,07
0,44 -1,48
0,35 -1,18
0,58 -1,91
map size in

player count. (4)Nightmare Station is a 4-player map where (2)Challenger is a 2-player
map. Since the running times vary from 0.2 seconds to 177 seconds, to better fit the data
into graph for a better readability, the logarithms of base 10 and base 2 are taken of the

running times and are used in charts that are shown in Figure 13 and Figure 14.

A side to side comparison for both cost minimization and gap minimization criteria is

given in table 4.

Table 4 - Cost minimization results are on the left, gap minimization readings are on the right.

Time Time Time Time

Width Time Logl0 Log2 Width Time Logl0 Log2
58,14 2,984 0,47 1,58 58,14 79,625 1,90 6,32
59,82 1,000 0,00 0,00 59,82 3,109 0,49 1,64
62,23 1,219 0,09 0,29 62,23 10,031 1,00 3,33
62,23 1,203 0,08 0,27 62,23 4,109 0,61 2,04
72,47 0,156 -0,81 -2,68 72,47 0,375 -0,43 -1,42
73,54 0,359 -0,44 -1,48 73,54 1,91 0,28 0,93
92,19 0,359 -0,44 -1,48 92,19 1,047 0,02 0,07
96,166 0,266 -0,58 -1,91 96,166 0,442 -0,35 -1,18
131,06 0,77 -0,12 -0,38 131,06 2,30 0,36 1,20
135,20 1,09 0,04 0,13 135,20 16,61 1,22 4,05
186,76 0,81 -0,09 -0,30 186,76 3,64 0,56 1,86
187,45 0,859 -0,07 -0,22 187,45 8,01 0,90 3,00
190,16 0,859 -0,07 -0,22 190,16 6,89 0,84 2,78
193,49 0,391 -0,41 -1,35 193,49 1,3 0,11 0,38
197,59 0,797 -0,10 -0,33 197,59 6,578 0,82 2,72

23

207,69 0,922 -0,04 -0,12 207,69 17,625 1,25 4,14

273,64 1,781 0,25 0,83 273,64 16,844 1,23 4,07

283,52 1,062 0,03 0,09 283,52 7,875 0,90 2,98

283,75 5,88 0,77 2,55 283,75 116,25 2,07 6,86

354,18 16,375 1,21 4,03 354,18 453,109 2,66 8,82
Cost Gap

Choke Width - Time Chart

10,00 8,82
8,00 16,32 6,8’6’/
4
5 600 Y 4,05 4,14 4,07 /8,03
< \ 3,33 3,00 2,98"
S 4,00 \ 504 " U278 2,72 meea 479255
' 64 ~o 4 ~1.86 L - s
@ 1,58‘1, PN , - - -
22,00 ‘6 0,29 G, 0,93 O A N
& 0,00 0,29 0,27 007 48913.030-0,22:0 ’
\ - i ' ’ '
S 0,00 ~ggé,1,4sfr,4g;‘}:§,§r
X QDD 9 X A o D
200 N & S @ P G A2 A
' B O A A v NN Y oo) %) e A D R, N
4o A (e G AN O AR SC S A AP P G, SN, S 8
’ Choke Width
----- Gap Cost

Figure 13 - Choke Width - Time Chart

It is clear from the chart in Figure 13 that choke width alone does not really determine the
runtime of the program since there are more variables affecting the building configuration
such as the number of available build tiles, the shape of the available build area, doodads
(trees, occlusions, obstacles, etc.). Even though the width-time relation is mainly
dependent on the map, it is safe to say that after ~135 px width of choke, it is not feasible
to use gap minimization and after ~280 px width, it is not feasible to wall in since it will
take longer than 4 seconds in each scenario.

Choke Width - Time Chart

10,00 8,82
8,00 ‘!
PP 6,32 6,86,
4
6,00 | Y Y.
v \ 4,05 4,14 14,07 V 403
g \ 3,33 , 4
S 4,00 A : P 3,00 2,78 2,72 7777 298 5 oo
v ~ 7 LY ” - 7
@ LN 2,04 SOoN1L,86 Lmea P =
a 1,58 164,77 .7 10 186 . \ ,
% 200 029 0,77 653 7 - 0,38, 0:83
9 0,00 0,29 G, | /“‘0,07 058 013 35.0,22-0,22 Q{/ 0,33 0,12
0,00 $3,4271,48 -1 78,118 -1,35
N P \PE S & @ & g oA N
200 T @V @ @t AR SR N A A s
-4,00 .
Choke Width
----- Gap Cost Upper Running Time Limit

Figure 14 - Choke Width - Time chart with upper limit

24

Having the upper limit set as shown in Figure 14, it can be concluded that for choke points
of width between 70px and 130px, it is feasible to use gap minimization while outside
these boundaries up until 280px width it is feasible to use cost minimization.

With the current state of the problem formulation and algorithm implementation, there are
some different outputs to the problem. Generally, the cost and gap minimization differ in
only two buildings’ layout as shown in Figures 15 and 16.

AR

Center g

ild erder rem

d Centars

ted. Build orde

HENL

Figure 16 - Map: Astral Balance, location: top, optimization: gap

However, in some scenarios some terrain obstacles are included in the wall when gap is
optimized, while in some others layout is preferred when cost is optimized as shown in
Figures 17 and 18. Here the tree is used as the part of the wall as placing a building near a
tree will not produce a gap value between the tiles.

25

MENL

Figure 17 - Map: Boxed In, location: bottom, optimization: cost. This solution doesn't include terrain

obstacles.

MENL

Figure 18 - Map: Boxed In, location: bottom, optimization: cost. Gap minimization includes terrain
obstacles as they prevent building gaps by having them placed apart.

In some maps where the walkable terrain is close to each other (imagine adjacent walk
tiles) but having different height (meaning that a unit cannot walk from one tile to another),
the logic program sometimes fails to produce an output or produce non-optimal results due
to the walk tiles are considered ‘adjacent’ in the logic program. A non-optimal solution can

be seen in Figure 19.

26

o
Sk

MENL

Figure 19 - Map: Binary Burghs, location: top, optimization: gap. The solver manages to find a
solution, however the solution is not optimal as there are two adjacent walk tiles near the structure
being built that appear to be walkable and adjacent in logic program.

27

6. CONCLUSION

The problem of building placement in StarCraft Al is solved by using logic programming
(ASP) as the Al module calls the logic program when the map analysis is finished.

This study has shown that using two optimization criterion for the problem, either
optimization mode has advantages over the other with respect to the width and shape of the
choke point. The calculation time raises as the width increases, rendering some situations
are non-practical. With the 4 second upper limit of calculation time, choke points with a
width larger than 287px is non-practical for walling in for both optimization modes. The
gap optimization mode is applicable for choke points with width between 60px and 130px.
For the choke point width values larger than this interval takes longer than 4 seconds, thus
are not applicable for a real scenario. For choke points with width values smaller than
287px and outside the gap minimization interval are suitable for cost minimization as it
takes less than 4 seconds for the logic program to produce the correct optimal solution.

Although the logic program performs well for most of the scenarios, there exists a problem
with the current simplified modeling of walk tiles, as seen in figure 19. Even though it is
acceptable for the introductory level of gameplay, if one is willing to make an Al system
acquire skills that of professional StarCraft players, this problem must be addressed and
fixed. For non-optimal solutions as shown in Figure 19, additional constraints can be
added. A constraint that checks the length of the path between adjacent tiles is a very good
candidate for this situation where the logic program will contain additional data that
contains the path information between tiles. By doing this, if two adjacent tiles have an
unacceptable path length but they are not occupied by buildings (the scenario in Figure
19), then they will not be considered by the ‘canReach’ predicate that is described in
Section 4.1.

The walls produced by ITUBot only include buildings and are applicable for full wall-ins.
Wall-ins are not always fully closing the passage. In most of the time, one can see
professional players using partial wall-ins to gain advantage in the battlefield when
defending an aggression. Therefore, if one is to augment this introductory solution, she
must consider units for wall-ins or modify the solution so as to partially wall in a large
choke point.

The source code of ITUBot is open and can be found at the online repository on GitHub
https://github.com/vilbeyli/. One can always download and modify the source code for
contribution.

https://github.com/vilbeyli/

28

/. REFERENCES

[1] Churchill D., Saffidine A. and Buro M., (2012). Fast Heuristic Search for RTS
Game Combat Scenarios. AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment Eighth Artificial Intelligence and Interactive Digital
Entertainment Conference

[2] Certicky, M., (2013). Implementing a Wall-In Building Placement in StarCraft with
Declarative Programming

[3] Liquipedia, wuser-generated StarCraft wiki. Retrieved 2014 from
http://wiki.teamliquid.net/starcraft/\Walling

[4] StarCraft & StarCraft: Brood War Video Games. Retrieved 2013 from
http://us.blizzard.com/en-us/games/sc/

[5] StarCraft: Brood War Application Programming Interface: BWAPI. Retrieved from
http://code.google.com/p/bwapi/ and https://github.com/bwapi/bwapi

[6] Ontanon S., Synnaeve G., Uriarte A., Richoux F., Churchill D. and Preuss M.,
(2013). A Survey of Real-Time Strategy Game Al Research and Competition in
StarCraft. Computational Intelligence and Al in Games, IEEE Transactions on
(Volume: 5, Issue: 4)

[7] Liquipedia, user-generated StarCraft wiki. Retrieved 2014 from
http://wiki.teamliquid.net/starcraft/Micro_and_Macro

[8] UAlbertaBot, StarCraft autonomous game-playing agent, developed by David
Churchill and his team. Retrieved 2013 from http://code.google.com/p/ualbertabot/

[9] Churchill D., Buro M., (2012). Incorporating Search Algorithms into RTS Game
Agents. AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment; Eighth Artificial Intelligence and Interactive Digital Entertainment
Conference

[10] Liquipedia, user-generated StarCraft wiki. Terran Buildings Gaps. Retrieved 2014
from
http://wiki.teamliquid.net/starcraft/images/thumb/1/1c/Terran_buildings_gaps.jpa/509p
x-Terran_buildings_gaps.jpg

[11] Liquipedia, user-generated StarCraft wiki. Walling as Terran. Retrieved 2014
from http://wiki.teamliquid.net/starcraft/images/c/c7/Walling As Terran.png

http://wiki.teamliquid.net/starcraft/Walling
http://us.blizzard.com/en-us/games/sc/
http://code.google.com/p/bwapi/
https://github.com/bwapi/bwapi
http://wiki.teamliquid.net/starcraft/Micro_and_Macro
http://code.google.com/p/ualbertabot/
http://wiki.teamliquid.net/starcraft/images/thumb/1/1c/Terran_buildings_gaps.jpg/509px-Terran_buildings_gaps.jpg
http://wiki.teamliquid.net/starcraft/images/thumb/1/1c/Terran_buildings_gaps.jpg/509px-Terran_buildings_gaps.jpg
http://wiki.teamliquid.net/starcraft/images/c/c7/Walling_As_Terran.png

29

[12] Churchill, D.; Buro, M.. Build Order Optimization in StarCraft. AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment, North America, oct.
2011. Retrieved 2014 from
https://www.aaai.org/ocs/index.php/AIIDE/AIIDE11/paper/view/4078

[13] Russel, S., Norvig, P. Artificial Intelligence A Modern Approach Third Edition.
Prentice Hall, 2009.

[14] clasp Answer Set Programming solver developed by University of Potsdam.
Retrieved 2013 from http://www.cs.uni-potsdam.de/clasp/

https://www.aaai.org/ocs/index.php/AIIDE/AIIDE11/paper/view/4078
http://www.cs.uni-potsdam.de/clasp/

