

ISTANBUL TECHNICAL UNIVERSITY
FACULTY OF COMPUTER AND

INFORMATICS

SOLVING BUILDING PLACEMENT PROBLEM IN A REAL-TIME
STRATEGY VIDEO GAME

Graduation Project
Volkan Ilbeyli

040100118

Department : Computer Engineering
Division : Computer Engineering

Advisor : Asst. Prof. Dr. Sanem SARIEL

July 2014

ISTANBUL TECHNICAL UNIVERSITY
FACULTY OF COMPUTER AND

INFORMATICS

SOLVING BUILDING PLACEMENT PROBLEM IN A REAL-TIME
STRATEGY VIDEO GAME

Graduation Project
Volkan Ilbeyli

040100118

Department : Computer Engineering
Division : Computer Engineering

Advisor : Asst. Prof. Dr. Sanem SARIEL

July 2014

Declaration of Authenticity

I would personally like to acknowledge you that;

1. I have specified all the references of the quotations by other sources that are used in my

thesis, by stating the original sources,

2. Except of the quotations from other sources; all of the theoretic studies, software and

hardware that determines the main topic of the project and are used in the thesis are

done by me.

Istanbul, 2014

Volkan İlbeyli

Acknowledgements

First and foremost, I would like to thank Asst. Prof. Dr. Sanem Sarıel for accepting me and

helping me complete this project and to my dear family who always supported me helped

me become a successful individual.

I would like to thank Fevzi ‘Arcane’ Altuncu and Ali Sinanoğlu for encouraging me to

continue and finish this project as StarCraft is the three of ours’ favorite game of all times.

Finally, special thanks to Gökhan Çoban and Mert Salık for all the projects we have done

together, their criticisms and for all the ideas we shared together, as they have helped me

to become this person who is always aiming for the best and chasing his childhood dream

as of now.

i

SOLVING BUILDING PLACEMENT PROBLEM IN A REAL-TIME

STRATEGY GAME

(SUMMARY)

StarCraft [4] is a real-time strategy video game, created by Blizzard Entertainment in 1998

and is the recent platform for real-time artificial intelligence. With the development of

BWAPI, a hack tool used to access in game data, StarCraft player- AI researchers began to

research in the area, starting in 2009. Recent publications in the area such as A Survey of

Real-Time Strategy Game AI Research and Competition in StarCraft, Fast Heuristic

Search for RTS Game Combat Scenarios, and more, proved the tool to be quite useful.

Among the many other sub-problems, blocking the entrance of a base, namely walling in,

is another sub-problem that is covered in this study.

A simple game playing agent is implemented that simply follows a certain build order (the

order by which the agent produces units or structures) and executes the logic program that

is obtained and modified from Michal Certicky’s Implementing a Wall-In Building

Placement in StarCraft with Declarative Programming. The logic program takes the data

that is gathered by the game playing agent by the help of BWAPI’s [5] terrain analyzer tool

and solves the constraint satisfaction problem (CSP) using answer set programming (ASP)

paradigm.

The solution process involves two stages: acquiring the answer set and optimizing the

results. Two optimization methods are used and analyzed one of which minimizes the gap

values between the structures and the other minimizes the cost of the wall using buildings’

resource cost values. Each of the methods has its advantages and disadvantages as one

method might be preferred over the other method in certain situations with respect to the

choke point’s width.

ii

GERÇEK ZAMANLI STRATEJİ OYUNUNUNDA BİNA YERLEŞTİRME
PROBLEMİNİN ÇÖZÜLMESİ

(ÖZET)

StarCraft, Blizzard Entertainment tarafından üretilen ve 1998 yılında piyasaya sürülen

gerçek zamanlı bir strateji oyunudur ve günümüzde gerçek zamanlı yapay zeka sistemleri

için kullanılan platformdur. Oyun motorunun detaylarına takılmadan oyun içi veriye

erişimi sağlayan ve bir hack-tool olan BWAPI'nin 2009 yılında geliştirilmesiyle gerçek

zamanlı yapay zeka sistemlerine dair araştırmalar hız kazandı. Son zamanlarda yayınlanan

A Survey of Real-Time Strategy Game AI Research and Competition in StarCraft, Fast

Heuristic Search for RTS Game Combat Scenarios, vb. makaleler BWAPI’nin ne kadar

kullanışlı olduğunun kanıtıdır. Diğer birçok problemin arasında bulunan üs girişini

kapatma problemi, diğer adıyla wall-in, bu çalışmada ele alınmaktadır.

Proje kapsamında öncelikle belli bir birim sırasını takip eden ve Michal Certicky'nin

Implementing a Wall-In Building Placement in StarCraft with Declarative Programming

makalesinden esinlenerek gerçeklennen ve geliştirilen mantıksal programı çalıştıran

otonom bır yapay zeka sistemi gerçeklenmiştir. Mantıksal program, otonom yapay zeka

sistemi tarafından BWAPI'nin yardımıyla elde edilen arazi bilgisi ile bir constraint

satisfaction problemı olarak modellenen üs girişini kapama problemini answer set

programming (ASP) paradigmasını kullanarak çözmektedir.

Oyunda binalar yan yana yerleştirildiğinde binaların yerleşimine göre aralarında boşluklar

kalmaktadır. Çözüm yöntemi bu boşlukları dikkate alarak bir çözüm üretmektedir. Bir

diğer dikkate alınan ölçüt ise binaları inşa etmek için gerekli olan kaynak miktarıdır.

Çözüm süreci cevap kümesini elde etmek ve optimum çözümü bulmak olarak iki aşamadan

oluşur. Kullanılan ve analiz edlien optimizasyon metotları binalar arasındaki boşluğu ve

duvarın oluşumunda kaynak harcamasını minimize eden iki metottan oluşur. Her yöntemin

kendine göre avantajları ve dezavantajları olmasına karşın boğum noktasının genişliğine

bağlı olarak bazı durumlarda bir metodun diğerine göre tercih edilebilir olduğu

gözlemlenmiştir.

Boğum noktası uzunluğu, uygun olan yer karosu (tile) sayısı, boğum noktasının bulunduğu

bölgenin şekli, harita dekorları (ağaçlar, göçükler, engeller, vb.) gibi değişkenlerin

bulunması nedeniyle tek başına programın çalışma süresini tam olarak belirleyebilmek için

yeterli bir parametre değildir. Buna rağmen bu parametrenin incelenmesi yeteri kadar ve

uygulanabilir sonuçlar elde etmek için yeterlidir.

Çalışma sonunda elde edilen sonuçlara göre mantıksal programa gerçek senaryolara uygun

olan dört saniyelik bir koşma üst sınırı verildiğinde her iki optimizasyon yöntemi de 280

piksel genişlik ve sonrası için dört saniyeden uzun sürede program sonlanmaktadır. Bu

sonuca göre duvar örülebilecek en geniş boğum noktası 280 piksel uzunluğu geçmemelidir.

135 piksel - 280 piksel aralığındaki sonuçlar incelendiğinde boşluk optimizasyonu

yönteminin dört saniyeden uzun sürdüğü ancak kaynak optimizasyonunun ise diğer

yönteme göre oldukça çabuk sonlandığı görülmüştür. Bu nedenle 135 piksel - 280 piksel

iii

uzunluk aralığındaki boğum noktaları için kaynak harcaması optimizasyonu tercih

edilmelidir. Bundan daha dar doğum uzunluğuna sahip bölgelerde ise boşluk

optimizasyonunu kullanan mantıksal program dört saniyenin altında sonlandığı için boşluk

optimizasyonu 135 piksel ve altındaki boğum noktası genişliğine sahip bölgeler için tercih

edilen yöntem olmalıdır.

Mantıksal programın ürettiği sonuçlar oyun içinde gözlemlendiği zaman harita dekoru

bulundurmayan ve görece olarak daha basit bir şekle sahip boğum noktalarında Şekil 15 ve

Şekil 16'da görüldüğü gibi iki binanın yerlerinin değiştiği; harita dekoru bulunduğu zaman

boşluk optimizasyonu yapıldığında Şekil 17 ve Şekil 18'de görüldüğü gibi bu dekorun

duvar örerken kullanıldığı gözlemlenmiştir. Bunlardan farklı olarak ise bazı durumlarda,

mantıksal programda ortam modellenirken bazı basitleştirmelerin kullanılması nedeniyle

programın Şekil 19'da görüldüğü gibi optimal olmayan sonuç üretebildiği ya da çözüm

olduğu halde programın çözüme ulaşamadığı gözlemlenmiştir.

Basitleştirmelerden doğan sorunları ortadan kaldırmak için yürüme karolarının (walk tile)

birbirinden uzaklığını kontrol eden ek bir kısıtlama getirilebilir; yapay zeka sisteminin

profosyonel StarCraft oyuncularına daha yakın bir performans gösterebilmesi için boğum

noktalarından avantaj elde edebilmek adına kısmi duvar örme algoritması geliştirilebilir.

iv

TABLE OF CONTENTS

1. INTRODUCTION ... 1

1.1. Project Scope and Purpose ... 1
1.2. Area of Usage .. 2
1.3. Resource, Time Management and Expectations .. 2
1.4. Risk Analysis and Gantt Chart .. 3

2. THEORETIC RESEARCH ... 5

2.1. Sub-Problems, Recent Challenges, Techniques .. 5
2.2. Bot Architecture & Some Algorithms Used In the Area 6

3. ANALYSIS AND MODELING.. 9
3.1. Environment Variables .. 9
3.1.1. Tiles ... 9

3.1.2. Gaps ... 10
3.2. ITUBot and Terrain Analysis .. 10

3.3. Problem Formulation ... 13
4. DESIGN AND IMPLEMENTATION .. 15

4.1. Encoding the Problem in Clasp ... 15
4.2. Bot Architecture ... 18

5. TESTING & RESULTS .. 21
6. CONCLUSION.. 27

7. REFERENCES .. 28

1

1. INTRODUCTION

1.1. Project Scope and Purpose

The algorithms used in strategy games such as Go and Chess has come a long way since

the beginning of the AI researches and managed to beat the top human players in late 90s

and early 2000s. However, things are way more complicated in real-time environments

such as Real-Time Strategy (RTS) games. StarCraft is an RTS video game created in 1998

by Blizzard Entertainment and is the game the AI algorithms are tested on in this project.

In environments such as RTS games the space and states are much larger than the ones in

regular strategy games while the constraints are way stricter, thus making RTS AI way

more complicated than the regular AI. To give an idea about the vastness of state space in

RTS games, below is the quote of Churchill from his paper [1]:

“From a theoretical point of view, the state space of a StarCraft game for a given map is

enormous. For example, consider a 128_128 map. At any given moment there might be

between 50 to 400 units in the map, each of which might have a complex internal state

(remaining energy and hitpoints, action being executed, etc.). This quickly leads to an

immense number of possible states (way beyond the size of smaller games, such as Chess

or Go). For example, just considering the location of each unit (with 128_128 possible

positions per unit), and 400 units, gives us an initial number of 16384400 ≈≈ 101685. If we

add the other factors playing a role in the game, we obtain even larger numbers.”|

StarCraft is a popular RTS game where players compete with each other by collecting

resources, making armies, applying various tactics in combat and try to destroy the

opponent player [2]. A sample screenshot from the game is given in Figure 1.

Figure 1: A Protoss (a race in game) army destroying its opponent.

2

RTS games have been an interesting area of research domain for Artificial Intelligence due

to the representation of well-defined complex adversarial systems and their divisibility into

numerous interesting sub-problems [1]. One of the sub-problems is “The Walling-in

Problem”, as called by the StarCraft community, Liquipedia, which is defined as “Walling

is the act of intentionally narrowing the passageway between strategical points by placing

buildings in a certain setup.” [3].

Walling-in is an important feature of a professional player which has a crucial outcome: In

the early game, professional players place their buildings around the choke-points (narrow

passages) so that an early aggression could be suppressed. If players do not conduct this

strategy, the attacking units of the opposing player might get inside the base, kill the

worker units and damage the economy severely, if not destroy all of the units and win the

game. A serious damage to economy most probably leads to a defeat. Therefore walling-in

is considered very important.

Current StarCraft game playing agents focused on other primary sub-problems such as

build-order planning, micro-management, combat tactics, etc. and did not pay much

attention to this problem. This project will deal with this problem by formulating the

walling-in as a CSP problem, implementing algorithms to solve the problem in declarative

programming (ASP, clasp) paradigm. The project is aiming to analyze the current solution

and improve it by modifying it.

1.2. Area of Usage

The project is directly related to the ever growing industry of video game entertainment

and the research area of real-time artificial intelligence. Improving the gameplay of AI

agents, getting them to a higher level near their human rivals will make the gameplay more

enjoyable, more realistic and more challenging. The future of RTS AI offers more

platforms for human-computer interaction and what the industry needs: more challenge,

more fun, more entertainment. In addition, StarCraft leads the real-time AI research area

thanks to the BWAPI and fairly complicated game play. Most important papers are

published in 2012/2013 and the ever growing research continues while more and more

researchers are interested in the area.

1.3. Resource, Time Management and Expectations

There is an API called BWAPI which lets the users communicate with the game engine

directly, thus helping the programmer focus on the AI aspects rather than dealing with the

irrelevant components of the game engine. A documentation of BWAPI can be obtained

from its website which is provided in the references section. Other resources are the game

itself: StarCraft: Brood War and the game playing agent: UAlbertaBot and the example

BWAPI AI module.

As for the time management, the project can be divided into subsections:

 Survey of AI techniques used in RTS games (1 – 1.5 months)

 Analysis of UAlbertaBot & Example AI Module (1 month)

 Formulation of the problem (2.5 months)

o Sensory input

o Available actions

 Implementation of algorithms (4 months)

3

 Analysis of the implemented search methods (1 month)

 Test & Iterations (1.5 month)

 Report & Presentation (1.5 month)

At the end of the project, among a successful implementation of the walling-in algorithm,

the gameplay of an agent is improved by the implemented algorithm helping them survive

early aggressions. This is one of the sub-problems in the RTS game AI that will be

attempted to be solved.

1.4. Risk Analysis and Gantt Chart

There are some foreseen risks in the project:

 Inaccurate time estimation

Time estimation made in the beginning of the project might be inaccurate and may

result in late submission, less number of implemented algorithms, poor analysis and

comparison report. The mitigation of this risk is to monitor the project every week

and track the progress carefully.

 The lectures attended during the terms might be overwhelming

Density of the lectures might interfere with the project and decrease the progress

velocity, resulting in delays and same negative outcomes described in previous risk.

 Lack of AI Knowledge

Prior to the project, there will be a lack of AI knowledge since no AI courses have

been taken thus far. Learning problem formulations, algorithms used for different

problems might take some time, which, again, will result in delays and negative

outcomes as described above.

 Poor algorithm performance

The implemented algorithms might perform poorly when applied in the real-time

environment of the video game. The mitigation of this risk is to do as many tests as

possible to measure the performance of the agent and apply necessary

improvements.

The time management of the project is explained above and the Gantt Chart of the project

workflow is given in Table 1.

4

Table 1 - Gannt chart of the project

 FALL TERM SEMESTER SPRING TERM

Survey of AI techniques

used in RTS games

Analysis of UAlbertaBot

Formulation of the

problem

Learning how to use

Clasp, Implementation of

Algorithms

Analysis of implemented

algorithms

Test & Iterations

Report & Presentation

5

2. THEORETIC RESEARCH

2.1. Sub-Problems, Recent Challenges, Techniques

There are lots of sub-problems in which AI techniques are used in StarCraft. The following

are the recent challenges in the field [6]:

 Planning

Since the state space is vast, game-tree search is not applicable, and therefore multiple

level of abstraction is needed: long-term planning for a balance in good economy –

large army, short-term planning for combat decisions.

 Learning

Three types of learning: prior learning, in-game learning, inter-game learning. Prior

learning includes extracting information from replays, or map terrain to gain advantage

before the game. In-game learning includes opponent modeling. Inter-game learning

concerns about improving the agent from game to game.

 Uncertainty

Map is partially observable, therefore scouting is needed for gathering information

about the opponent. Games are adversarial, impossible to predict what opponent will

do. Human players consider actions that opponents are likely-to-do.

 Spatial and temporal reasoning

Spatial reasoning: Terrain exploitation: higher ground has advantage over lower ground

since units on lower ground has no sight of the higher ground. Deciding where to

engage combat to use bottlenecks for advantage. Base expansion, finding and deciding

best location according to opponent base’s location.

Temporal reasoning: timing attacks, retreats. Long-term planning of actions that has a

higher impact on economy such as upgrades, strategy switching etc. A diagram

illustrating spatial and temporal reasoning used in StarCraft is shown in Figure 2.

6

Figure 2 - Spatial and temporal reasoning [6]

 Domain knowledge exploitation

Traditional strategy games (chess, go) exploited large amounts of the domain

knowledge and developed good evaluation functions. On the other hand StarCraft has a

much larger domain and approaches are in two ways: Hard-coding the strategies into

agents and running an algorithm to decide instead of an adaptive approach; large set of

replays are created and agents try to learn from replays. Both are still open problems.

 Task decomposition

Strategy: high level decision making: finding an efficient or counter strategy.

Tactics: Implementation of the current strategy: army composition, building

positioning, army movements, timing etc. Tactics concern a group of units.

Reactive Control: Micro-management: Firing, retreating, kiting (hit-and-run).

Terrain Analysis: Choke-points, mineral and gas (resource) locations, high grounds.

Intelligence Gathering: Scouting the opponent.

For the human side of decision making, the StarCraft community mentions two tasks [7]:

 Micro management: micro-management roughly corresponds to the reactive control

which involves the individual or a small group of unit control and positioning and etc.

 Macro management: macro covers all of the above except reactive control. Unit

producing, expanding the base for extra resource income at the right time, choosing the

appropriate unit combination to counter the opponent etc.

Current studies in RTS game AI divided these tasks into three parts as shown in figure 2:

strategy, tactics and reactive control.

2.2. Bot Architecture & Some Algorithms Used In the Area

UAlbertaBot [8] is a StarCraft playing agent developed by David Churchill and his team.

The bot has a modular and hierarchical structure as illustrated in Figure 3:

7

Figure 3: UAlbertaBot architecture [9]

Tasks are partitioned among modules according to their strategic meaning, as an

inspiration from the military. High level strategic decisions are made by the game

commander by gathering all the information about the current game state. From there,

commands are given to sub-commanders and so on which are directly in charge of

completing the low level tasks [9].

To solve the problems addressed in the previous section, some algorithms are

implemented, given the specifications of the StarCraft task environment as shown in table

2:

Table 2 - StarCraft world model

Below are some of them used on the UAlbertaBot:

 ABCD (Alpha-Beta search Considering Duration) algorithm is used for micro-

management (deciding what each unit will perform in a combat situation) which

can be classified as a zero-sum situation [9] as shown in Figure 4. This property

together with the fully observable state variables and simultaneous moves places

combat games in the class of “stacked matrix games” [1]. Those games can be

solved by backward induction starting with terminal states via Nash equilibrium

computations.

Task

Environment

Observable Agents Deterministic Episodic Static Discrete

StarCraft Partially Multiple Stochastic Sequential Dynamic Discrete

8

Figure 4: Search algorithms used in UAlbertaBot [1]

 An any-time depth first branch and bounding algorithm is used for build order

planning. An ordered sequence of actions which produces a given set of goal units

is called a build order [1].

 There are a few approaches addressing strategic decision making: hard-coded,

planning based and machine learning based approaches. Therefore, various

machine learning algorithms are used as well [1].

9

3. ANALYSIS AND MODELING

3.1. Environment Variables

Liquipedia, the Wikipedia of the StarCraft universe, defines the term “walling” or

“walling-in” as follows: “Walling is the act of intentionally narrowing the passageway

between strategical points by placing buildings in a certain setup.” [3].

Walling in most commonly includes, but is not limited to, closing the entrance of the

player’s base, aiming to block the enemy units that are trying to get through as shown in

Figure 5.

Figure 5 - A Terran player walling in [11]

The idea behind the walling is shrinking the free space when a combat scenario occurs,

therefore providing advantage to the defending player’s units by reducing the surface area

of the units when a composition of melee attackers strike.

3.1.1. Tiles
In StarCraft Broodwar, the unit length is measured by pixels. A single square area that is

visible to a player when she is building structures is a 32x32 pixel square, named a build

tile.

10

Figure 6 - A Terran player building a Barracks (3x4)

Figure 6 is a screenshot from the game in which a Terran player is going to build a

structure named Barracks, which occupies 3x4 build tiles, thus having a width of 128

pixels and a height of 96 pixels. It can be seen from the figure that the lower left corner of

the building collides with another building in construction.

The second type of tiles is the walk tile, which has a dimension of 8x8 pixels on which

units are able to walk.

3.1.2. Gaps
When two buildings are placed next to each other as to occupy adjacent build tiles, the tiles

are not fully occupied due to the fact that the buildings have gaps associated with their

sides. Therefore, two neighbor tiles have a gap as much as the summation of each of the

structure’s associated side. The values of gaps for each building can be found in

Liquipedia. The Terran buildings’ gap list is shown in Figure 7.

Following this, when a Supply Depot (in the 1st row and the 3rd building in Figure 7) is

placed above a Barracks (the 1st row and 2nd building) the gap value will be 13, which is

the lowest combination of a gap value when these two buildings are built next to each

other. Thus, Supply-Depot-above-Barracks is usually a preferred building placement

strategy. When the gaps are wide enough for smaller units, even though all build tiles are

occupied by the buildings, these units can get through. The main idea is not blocking the

way only by buildings, but it is to narrow the passage so that the opponent’s melee units

will have a smaller surface area of their targets and thus provide advantage over the

combat to the defending player.

3.2. ITUBot and Terrain Analysis

BWAPI provides a built in terrain analysis tool called BWTA (BroodWar Terrain

Analysis) which reads and analyzes the map data in a different parallel-to-game thread. At

the end of the analysis, all the tile information is able to be obtained by the BWAPI

11

interface and can be drawn in game area as shown in Figure 8. The map is divided into

regions by the choke points, which are defined in Liquipedia [3] as:

“A choke is a narrow pathway or area that creates a funneling effect when moving through

it. Similar to high ground, a choke massively favors the defender over the attacker.

Examples of a choke include ramps and narrow passageways.”

Figure 7 – Enumeration of Terran buildings' gap sizes [10]

12

Figure 8 - After the terrain analysis, the borders of the base are drawn green and the choke point is

drawn red. Orange squares are the building placements as the result of the solver, which is not a part

of the terrain analysis and will be explained in the following section.

ITUBot has its build order planned beforehand, meaning that the units and structures the

bot is going to make is defined at the initialization stage, i.e., hardcoded into the bot. Since

build order planning is another area of the RTS AI, it is currently left for further study (see

[12]). The structures are built after the map analysis is finished.

Upon the completion of map analysis, the build and walk tile data are made ready by the

tile analysis made by the bot. BWAPI provides the properties of the tiles such as a tile is

buildable and walkable or there exists a path between given two tiles or positions (pixels).

In order to simplify the logic program, walk tiles (8x8) are extrapolated to build tiles

(32x32) by checking the four center walk tiles in a build tile, and then passed to the logic

program as walkable tiles.

In the build tile given in Figure 9 there exists 16 walk tiles. The green tiles are walkable

while the red tiles are not walkable tiles. The program checks the 4 center walk tiles and

according to the number of walkable tiles, this tile is passed as a walkable tile or ignored.

Due to this simplification, some complications are foreseen to occur.

Figure 9 – The abstraction representation (8x8) of a walk tile (32x32) for the logic program. This tile

would be considered as a walk tile and appear as a purple tile in the representation.

13

The tile analysis after the map analysis completes is shown in Figure 10. The purple tiles

are the walk tiles represented in the logic program. The logic program produces a result by

checking a path availability from a base point to an outside-base point by checking whether

adjacent tiles are blocked or not, which will be explained later. The green tiles are inside-

base buildable tiles. The presence of red squares in green circles represents that this is a

suitable tile to build a supply depot (a structure is placed according to top left tile of the

building layout meaning that a 2x3 building built on 44, 70 will occupy the following tiles:

44,70 , 45,70 , 46,70 , 44,71 , 45,71 , 46,71). Likewise, blue squares represent tiles that are

suitable for a barracks construction. Finally, the cyan tiles represent the outside base tiles.

The chokepoint is in between the area where green and cyan tiles are adjacent to each

other. Note that since in BWAPI, the coordinates (0, 0) refer to the upper left corner of the

map, increasing X means going right and increasing Y means going down. This means that

when buildings are placed on a coordinate (X, Y), the upper left tile of the building is

placed on this coordinate.

3.3. Problem Formulation

Given the entities described above (tiles, gaps, structures), it is possible to formulate the

problem as a CSP (Constraint Satisfaction Problem). [13] A CSP problem typically has the

form of a triple where X is the variable (in our case, buildings), D is the value

(the tile position on which the buildings can be built) assigned to that variable and C are

the constraints [13]. Certicky defines three constraints excluding the Protoss’ racial

building placement constraint [2]:

1. All the buildings should be able to be built on their designated locations depending

on the terrain properties (green squares after the analysis, figure 10).

2. Buildings cannot overlap (red square in figure 6).

3. There should not be a path available from inside the base to outside after the

buildings are constructed.

A CSP defined in this way often has multiple solutions some of which are more desirable

than others. To build a tight wall which prevents smaller units from passing through, a

player has to take into consideration the gap values of the buildings. This situation leads to

an optimization problem where the minimum gap value is desired in an answer set

programming framework.

Certicky solves both the constraint and the minimization problem using Answer Set

Programming (ASP) paradigm of logic programming by a tool named clingo. Clingo is the

combination of the grounder gringo and the solver clasp, written in C++ and developed at

the University of Potsdam. Clingo provides its users the basic ASP constructs such as

rules, constraints and facts, as well as a support for generator rules, optimization statements

and built-in arithmetic functions and aggregates. For more information, please refer to

Certicky’s Wall-in Building Placement (2013) [2] and the guide provided with the solver

bundle by University of Potsdam [14].

14

Figure 10 - Tile representation of a game environment. The purple tiles are walk tiles, the cyan tiles are

the tiles that are outside the base region and the green tiles are buildable inside-base tiles. Red and

blue tiles represent the available location for certain buildings, such as Supply Depot or Barracks.

15

4. DESIGN AND IMPLEMENTATION

4.1. Encoding the Problem in Clasp

An existing logic program originally designed by Michal Certicky solves the walling

problem by using ASP [2]. After implementing this solver, it has been observed that it

needs modifications for better results. In this project, this solution is extended to improve

its efficiency.

The ASP formulation of the problem includes the building variables such as resource cost,

width, height and gap which are hardcoded into the logic program as facts. Then, the

buildings to be used at the wall construction are specified.

After presenting the building facts, constraints are specified. The first constraint states that

two different buildings cannot occupy the same tile position (cannot overlap) which

corresponds to the second constraint specified when formulating the problem. In other

words, a tile position (X, Y) occupied by Building1 and Building2 and ‘Building1 is not

the same as Building2’ cannot all hold true at the same time.

Next rule states that the occupied tiles by the buildings must be defined. Using the

previously defined entities of the buildings, the rule can be specified as follows:

‘If a building is placed on position (X1, Y1) that has a type of BuildingType and that

BuildingType has a width of Z and a height of Q, and X2 is in the range of X1 inclusive

and X1+Z exclusive, likewise Y2 is in the range of Y1 inclusive and Y1+Q exclusive and

the tile (X2, Y2) is walkable; then the position (X2, Y2) is occupied by the building B’.

16

The following set of rules simply calculates the vertical and horizontal gaps of the

buildings if they have adjacent tiles in a similar fashion to the previous rule. These

calculated gap values will later be used in the optimization phase.

The following rule is specified to be used as an alternative optimization criterion, which

simply calculates the mineral cost of each building that are used in wall construction.

Now that the rules and constraints regarding the building placement are specified, the tile

information is required. BWAPI’s BWTA module thankfully does the analysis to the point

where the tiles contain data such as buildable and walkable. The tile information

surrounding a choke point is passed to the solver by the bot. A certain range of tiles are

passed to the solver in order to reduce the computation time. These facts – buildable tiles

in particular – directly satisfy the 1st constraint specified in the problem formulation, i.e.,

‘All the buildings should be able to be built on their designated locations depending on the

terrain properties’.

In compliance with the 3rd constraint, to check whether there is a path exists from inside

the base to outside the base, we must specify the inside and outside base coordinates, as

well as the rules for path existence. insideBase position is chosen as the closest tile to the

17

Command Center among the tiles passed to the solver while outsideBase position is chosen

as the farthest tile to the Command Center which has a path between them. The path

existence must be checked, otherwise, if the farthest chosen tile has no connections with

the rest of the near-base tiles, any solution will be accepted by the solver even though they

do not block the base entrance.

 Next, the reachability rules among tiles must be defined. The first rule states that if a

walkable tile is occupied by a building, then that tile is blocked. The second rule simply

states that the outside base is reachable by definition, meaning that the solver will start to

check the path existence from the outside base. Finally, the set of reachability rules simply

states that if any of the adjacent (all 8 directions) walkable tiles are not blocked, that tile is

reachable. This is the exact reason that the actual smaller walk tiles are extrapolated to the

size of build tiles for simplification purposes. These set of rules take care of the path

finding problem associated with the 3rd constraint.

Finally, all possible building placements are generated and then tested if they are in the set

of solutions to our CSP. It is desired to check solutions with exactly one

place(barracks1,X,Y) and place(supplyDepot1,X,Y) while the other building placements

can be omitted when minimizing the solution. The last line specifies what to minimize,

which is the cumulative cost value in this case.

18

In the case of gap minimization, prioritization among minimization literals are used. The

highest priority belongs to the vertical and horizontal gap together (notice the @1). In case

of no prioritization, which is the case in Certicky’s solution, first the horizontal gap would

be minimized and then the vertical gap would be minimized. In our case, the total gap

value is minimized rather than individual gap types. Since the solver is run once rather than

adding buildings iteratively in Certicky’s solution, we have to specify the minimization

criterion of the building placements. Otherwise, all the buildings will be used in the wall

configuration even though the path might be blocked with fever buildings. That is why the

minimization for buildings must be specified and must be assigned to the 2nd priority.

As for the comparison of this study’s solution and Certicky’s solution, this study ignores

the enemy units’ dimensions when checking reachability since narrowing down the

available path to a single unit’s size grants enough tactical advantage at this level of

gameplay.

4.2. Bot Architecture

ITUBot is built on the example AI module bundled with the BWAPI installer. It inherits all

the event functions (onFrame(), onSendText(), etc.) from the example AI module, as well

as the terrain analysis functions, draw functions and data functions as shown in Figure 11.

StarCraft AI bots have a similar architecture to that of game engines. onStart() function is

used for data initializations, onFrame() function is called every frame and the primary

function for AI calculations. The rest of the module functions are simply event handlers

that go through certain procedures after some designated events occur such as a completion

of a unit or a discovery of a unit.

Draw functions are used to draw analysis data on the game area after the map analysis is

finished. Data functions are used to display information in the game area if certain flags are

set. Build order functions return the build order, initialize the build order and execute the

build order respectively. Build order execution is a loop that is called at each frame that

checks if the conditions are satisfied to build a structure or a unit (population constraint,

resource cost, etc.) and then sends the next item in the build order with the construction

command to a designated worker.

19

Wall functions return the vector of pairs of buildings and their tile positions; initialize the

logic program’s source code and executes the logic program, respectively. Logic

program’s initialization and execution is done after the map analysis is complete.

ITUBot

_buildOrder : queue<UnitType>
_wall : vector< pair<UnitType, TilePosition> >

// BWAPI AI Module functions
void onStart();
void onEnd(bool isWinner);
void onFrame();
void onSendText(std::string text);
void onReceiveText(BWAPI::Player* player, string text);
void onPlayerLeft(BWAPI::Player* player);
void onNukeDetect(BWAPI::Position target);
void onUnitDiscover(BWAPI::Unit* unit);
void onUnitEvade(BWAPI::Unit* unit);
void onUnitShow(BWAPI::Unit* unit);
void onUnitHide(BWAPI::Unit* unit);
void onUnitCreate(BWAPI::Unit* unit);
void onUnitDestroy(BWAPI::Unit* unit);
void onUnitMorph(BWAPI::Unit* unit);
void onUnitRenegade(BWAPI::Unit* unit);
void onSaveGame(string gameName);
void onUnitComplete(BWAPI::Unit *unit);

// draw functions
Void drawStats();
void drawBullets();
void drawVisibilityData();
void drawTerrainData();
void drawChokeData();

// data functions
void showPlayers();
void showForces();
bool show_bullets;
bool show_visibility_data;

// build order functions
queue<BWAPI::UnitType>& buildOrder();
void populateBuildOrder();
void executeBuildOrder(BWAPI::Unit* unit);

// wall functions
vector<std::pair<BWAPI::UnitType, BWAPI::TilePosition> >& wall();
static void initClingoProgramSource();
static void runASPSolver();

Figure 11 - ITUBot UML diagram

20

Figure 12 illustrates the overview of the execution of AI code by displaying the inner

workings of onStart() function and onFrame() function.

Figure 12 - Flow chart of ITUBot

21

5. TESTING & RESULTS

Experiments are done for testing the performance of the ASP solver on different settings.

The machine (ASUS N550JV) specifications used for testing the solver are as follows:

 CPU: Intel Core i7-4700HQ @ 2.40 GHz

 RAM: 12GB

 HDD: 1TB HGST HTS541010A9E680

 OS: Windows 8.1 Pro

There are 8 different maps used when calculating the solver’s running time. The results are

presented in table 3. Gap minimization data is given in bold and the time results are in

seconds.

Table 3 - Map specific solver results with different optimization criteria

Map
Optimization
Criteria

Start
Location Width

Building
Count Time

Time
Log10

Time
Log2

(4)Boxed In Gap top right 283,75 3 116,25 2,07 6,86

Cost

3 5,88 0,77 2,55

Gap bot right 186,76 3 3,64 0,56 1,86

Cost

3 0,81 -0,09 -0,30

 (2)Astral Balance Gap top 131,06 3 2,30 0,36 1,20

Cost

3 0,77 -0,12 -0,38

Gap bot 135,20 4 16,61 1,22 4,05

Cost

4 1,09 0,04 0,13

 (4)Lost Temple Gap top 62,23 3 10,031 1,00 3,33

Cost

3 1,219 0,09 0,29

Gap right 58,14 3 79,625 1,90 6,32

Cost

3 2,984 0,47 1,58

Gap left 59,82 2 3,109 0,49 1,64

Cost

2 1,000 0,00 0,00

Gap bot 62,23 3 4,109 0,61 2,04

Cost

3 1,203 0,08 0,27

 (2)Binary Burghs Gap top 354,18 5 453,109 2,66 8,82

Cost

5 16,375 1,21 4,03

Gap bot 273,64 3 16,844 1,23 4,07

Cost

3 1,781 0,25 0,83

 (3)Ice Mountain Gap bot left 72,47 2 0,375 -0,43 -1,42

Cost

0,156 -0,81 -2,68

Gap top right 73,54 2 1,91 0,28 0,93

Cost

0,359 -0,44 -1,48

22

(4)Nightmare
Station Gap top left 193,49 2 1,3 0,11 0,38

Cost

2 0,391 -0,41 -1,35

Gap top right 197,59 2 6,578 0,82 2,72

Cost

2 0,797 -0,10 -0,33

Gap bot left 187,45 2 8,01 0,90 3,00

Cost

2 0,859 -0,07 -0,22

Gap bot right 190,16 2 6,89 0,84 2,78

Cost

2 0,859 -0,07 -0,22

 (2)Challenger Gap top 283,52 2 7,875 0,90 2,98

Cost

3 1,062 0,03 0,09

Gap bot 207,69 2 17,625 1,25 4,14

Cost

2 0,922 -0,04 -0,12

 (2)Space Madness Gap top 92,19 3 1,047 0,02 0,07

Cost

3 0,359 -0,44 -1,48

Gap bot 96,166 2 0,442 -0,35 -1,18

Cost

2 0,266 -0,58 -1,91

The number in parentheses in the beginning of the map name denotes the map size in

player count. (4)Nightmare Station is a 4-player map where (2)Challenger is a 2-player

map. Since the running times vary from 0.2 seconds to 177 seconds, to better fit the data

into graph for a better readability, the logarithms of base 10 and base 2 are taken of the

running times and are used in charts that are shown in Figure 13 and Figure 14.

A side to side comparison for both cost minimization and gap minimization criteria is

given in table 4.

Table 4 - Cost minimization results are on the left, gap minimization readings are on the right.

Width Time
Time

Log10
Time
Log2

Width Time

Time
Log10

Time
Log2

58,14 2,984 0,47 1,58

58,14 79,625 1,90 6,32
59,82 1,000 0,00 0,00

59,82 3,109 0,49 1,64

62,23 1,219 0,09 0,29

62,23 10,031 1,00 3,33

62,23 1,203 0,08 0,27

62,23 4,109 0,61 2,04
72,47 0,156 -0,81 -2,68

72,47 0,375 -0,43 -1,42

73,54 0,359 -0,44 -1,48

73,54 1,91 0,28 0,93
92,19 0,359 -0,44 -1,48

92,19 1,047 0,02 0,07

96,166 0,266 -0,58 -1,91

96,166 0,442 -0,35 -1,18

131,06 0,77 -0,12 -0,38

131,06 2,30 0,36 1,20
135,20 1,09 0,04 0,13

135,20 16,61 1,22 4,05

186,76 0,81 -0,09 -0,30

186,76 3,64 0,56 1,86
187,45 0,859 -0,07 -0,22

187,45 8,01 0,90 3,00

190,16 0,859 -0,07 -0,22

190,16 6,89 0,84 2,78
193,49 0,391 -0,41 -1,35

193,49 1,3 0,11 0,38

197,59 0,797 -0,10 -0,33

197,59 6,578 0,82 2,72

23

207,69 0,922 -0,04 -0,12

207,69 17,625 1,25 4,14

273,64 1,781 0,25 0,83

273,64 16,844 1,23 4,07
283,52 1,062 0,03 0,09

283,52 7,875 0,90 2,98

283,75 5,88 0,77 2,55

283,75 116,25 2,07 6,86
354,18 16,375 1,21 4,03

354,18 453,109 2,66 8,82

Cost

Gap

Figure 13 - Choke Width - Time Chart

It is clear from the chart in Figure 13 that choke width alone does not really determine the

runtime of the program since there are more variables affecting the building configuration

such as the number of available build tiles, the shape of the available build area, doodads

(trees, occlusions, obstacles, etc.). Even though the width-time relation is mainly

dependent on the map, it is safe to say that after ~135 px width of choke, it is not feasible

to use gap minimization and after ~280 px width, it is not feasible to wall in since it will

take longer than 4 seconds in each scenario.

Figure 14 - Choke Width - Time chart with upper limit

24

Having the upper limit set as shown in Figure 14, it can be concluded that for choke points

of width between 70px and 130px, it is feasible to use gap minimization while outside

these boundaries up until 280px width it is feasible to use cost minimization.

With the current state of the problem formulation and algorithm implementation, there are

some different outputs to the problem. Generally, the cost and gap minimization differ in

only two buildings’ layout as shown in Figures 15 and 16.

Figure 15 - Map: Astral Balance, location: top, optimization: cost

Figure 16 - Map: Astral Balance, location: top, optimization: gap

However, in some scenarios some terrain obstacles are included in the wall when gap is

optimized, while in some others layout is preferred when cost is optimized as shown in

Figures 17 and 18. Here the tree is used as the part of the wall as placing a building near a

tree will not produce a gap value between the tiles.

25

Figure 17 - Map: Boxed In, location: bottom, optimization: cost. This solution doesn't include terrain

obstacles.

Figure 18 - Map: Boxed In, location: bottom, optimization: cost. Gap minimization includes terrain

obstacles as they prevent building gaps by having them placed apart.

In some maps where the walkable terrain is close to each other (imagine adjacent walk

tiles) but having different height (meaning that a unit cannot walk from one tile to another),

the logic program sometimes fails to produce an output or produce non-optimal results due

to the walk tiles are considered ‘adjacent’ in the logic program. A non-optimal solution can

be seen in Figure 19.

26

Figure 19 - Map: Binary Burghs, location: top, optimization: gap. The solver manages to find a

solution, however the solution is not optimal as there are two adjacent walk tiles near the structure

being built that appear to be walkable and adjacent in logic program.

27

6. CONCLUSION

The problem of building placement in StarCraft AI is solved by using logic programming

(ASP) as the AI module calls the logic program when the map analysis is finished.

This study has shown that using two optimization criterion for the problem, either

optimization mode has advantages over the other with respect to the width and shape of the

choke point. The calculation time raises as the width increases, rendering some situations

are non-practical. With the 4 second upper limit of calculation time, choke points with a

width larger than 287px is non-practical for walling in for both optimization modes. The

gap optimization mode is applicable for choke points with width between 60px and 130px.

For the choke point width values larger than this interval takes longer than 4 seconds, thus

are not applicable for a real scenario. For choke points with width values smaller than

287px and outside the gap minimization interval are suitable for cost minimization as it

takes less than 4 seconds for the logic program to produce the correct optimal solution.

Although the logic program performs well for most of the scenarios, there exists a problem

with the current simplified modeling of walk tiles, as seen in figure 19. Even though it is

acceptable for the introductory level of gameplay, if one is willing to make an AI system

acquire skills that of professional StarCraft players, this problem must be addressed and

fixed. For non-optimal solutions as shown in Figure 19, additional constraints can be

added. A constraint that checks the length of the path between adjacent tiles is a very good

candidate for this situation where the logic program will contain additional data that

contains the path information between tiles. By doing this, if two adjacent tiles have an

unacceptable path length but they are not occupied by buildings (the scenario in Figure

19), then they will not be considered by the ‘canReach’ predicate that is described in

Section 4.1.

The walls produced by ITUBot only include buildings and are applicable for full wall-ins.

Wall-ins are not always fully closing the passage. In most of the time, one can see

professional players using partial wall-ins to gain advantage in the battlefield when

defending an aggression. Therefore, if one is to augment this introductory solution, she

must consider units for wall-ins or modify the solution so as to partially wall in a large

choke point.

The source code of ITUBot is open and can be found at the online repository on GitHub

https://github.com/vilbeyli/. One can always download and modify the source code for

contribution.

https://github.com/vilbeyli/

28

7. REFERENCES

[1] Churchill D., Saffidine A. and Buro M., (2012). Fast Heuristic Search for RTS

Game Combat Scenarios. AAAI Conference on Artificial Intelligence and Interactive

Digital Entertainment Eighth Artificial Intelligence and Interactive Digital

Entertainment Conference

[2] Certicky, M., (2013). Implementing a Wall-In Building Placement in StarCraft with

Declarative Programming

[3] Liquipedia, user-generated StarCraft wiki. Retrieved 2014 from

http://wiki.teamliquid.net/starcraft/Walling

[4] StarCraft & StarCraft: Brood War Video Games. Retrieved 2013 from

http://us.blizzard.com/en-us/games/sc/

[5] StarCraft: Brood War Application Programming Interface: BWAPI. Retrieved from

http://code.google.com/p/bwapi/ and https://github.com/bwapi/bwapi

[6] Ontanon S., Synnaeve G., Uriarte A., Richoux F., Churchill D. and Preuss M.,

(2013). A Survey of Real-Time Strategy Game AI Research and Competition in

StarCraft. Computational Intelligence and AI in Games, IEEE Transactions on

(Volume: 5, Issue: 4)

[7] Liquipedia, user-generated StarCraft wiki. Retrieved 2014 from

http://wiki.teamliquid.net/starcraft/Micro_and_Macro

[8] UAlbertaBot, StarCraft autonomous game-playing agent, developed by David

Churchill and his team. Retrieved 2013 from http://code.google.com/p/ualbertabot/

[9] Churchill D., Buro M., (2012). Incorporating Search Algorithms into RTS Game

Agents. AAAI Conference on Artificial Intelligence and Interactive Digital

Entertainment; Eighth Artificial Intelligence and Interactive Digital Entertainment

Conference

[10] Liquipedia, user-generated StarCraft wiki. Terran Buildings Gaps. Retrieved 2014

from

http://wiki.teamliquid.net/starcraft/images/thumb/1/1c/Terran_buildings_gaps.jpg/509p

x-Terran_buildings_gaps.jpg

[11] Liquipedia, user-generated StarCraft wiki. Walling as Terran. Retrieved 2014

from http://wiki.teamliquid.net/starcraft/images/c/c7/Walling_As_Terran.png

http://wiki.teamliquid.net/starcraft/Walling
http://us.blizzard.com/en-us/games/sc/
http://code.google.com/p/bwapi/
https://github.com/bwapi/bwapi
http://wiki.teamliquid.net/starcraft/Micro_and_Macro
http://code.google.com/p/ualbertabot/
http://wiki.teamliquid.net/starcraft/images/thumb/1/1c/Terran_buildings_gaps.jpg/509px-Terran_buildings_gaps.jpg
http://wiki.teamliquid.net/starcraft/images/thumb/1/1c/Terran_buildings_gaps.jpg/509px-Terran_buildings_gaps.jpg
http://wiki.teamliquid.net/starcraft/images/c/c7/Walling_As_Terran.png

29

[12] Churchill, D.; Buro, M.. Build Order Optimization in StarCraft. AAAI Conference

on Artificial Intelligence and Interactive Digital Entertainment, North America, oct.

2011. Retrieved 2014 from

https://www.aaai.org/ocs/index.php/AIIDE/AIIDE11/paper/view/4078

[13] Russel, S., Norvig, P. Artificial Intelligence A Modern Approach Third Edition.

Prentice Hall, 2009.

[14] clasp Answer Set Programming solver developed by University of Potsdam.

Retrieved 2013 from http://www.cs.uni-potsdam.de/clasp/

https://www.aaai.org/ocs/index.php/AIIDE/AIIDE11/paper/view/4078
http://www.cs.uni-potsdam.de/clasp/

